Existing PV system

- Set P-Hz droop or Hi Hz cutoff for each array 0.2 Hz apart.

Motorized power breaker with PLC

- Intertie relay controller (Sync + anti-island detection meter)

Microgrid with existing or new PV application

- Basic: Microgrid, demand response and photo-voltaic application
 - Set to microgrid mode with each machine on same P-Hz setting
 - Enables perfect load sharing amongst PEMS units and control of the solar inverters production when islanded

- Advanced: Microgrid, demand response and photo-voltaic application
 - On-grid dispatch constantly adjusted by remote or 3rd party client site based controller
 - Off-grid operation controlled by PEMS and PV inverter (f-function)

Demand response application ADVANCED using external 3rd party or PPS controller

- Production dispatch constantly adjusted by remote or client site based controller

Demand response application BASIC using internal PEMS controls

- Production dispatch constantly adjusted by simple preprogrammed internal “baseline” peak demand threshold and/or “Time of use” schedule

Demand response application ADVANCED using external 3rd party or PPS controller

- Production dispatch constantly adjusted by remote or client site based controller

Legend

- Inverter
- Battery pack
- Electricity meter, for control or utility metering
- Third party controller, typically a mix of cloud and local control. Provider of dispatch power levels. Typically not in control of microgrid breaker
- Auto transformer – not isolated
- Delta: Wye transformer isolated
- Photo-voltaic array
- UPS/Inverter with 1:1 D:Y transformer on transformer port in UL approved configuration connected to battery system
- Self contained switch located at load or source
- Utility meter
- Demand response meter

From Demand Response through to Microgrids

- 250 kW - 500 kWh model pictured here

PLC / CTRL MODBUS TCP / 485